## Transducer / Buzzer Measurement

### Sound Pressure and Distance

As there are differences in the measuring distances when manufacturers make the measurement of sound pressure, the following formula is recommended for calculation upon occasion when a buzzer is tested or compared with a planned final product.

leasuring distance

2 times

3 times

4 times

6 times

7 times

8 times

9 times

10times

Sound pressur

variation(dB)

-6.02

-9.54

-13.56

-15.56

-16.90

-18.06

-19.08

-20.00

- 16

- 14

- 12

- 10

However, as far as the calculated value is concerned, it is a theoretical one and therefore subject to change, depending on circumstances and conditions.

The formula is : B = A+20Log(La/Lb)

A : sound pressure level at distance La

B : sound pressure level at distance Lb

For example, when the distance is doubled,

B = A + 20Log(La/Lb) = A + 20Log(1/2) = A + 6.02That is, the sound pressure is inclined to be reduced by 6.02dB. The table below is to show relations between the measuring distance and sound pressure variation for the reference

### Design Method of Device Resonator Housing

The following formula is basic analysis, Helmholz resonator to increase sound pressure.

$$f_v = \frac{CD}{4} \sqrt{\frac{1}{\pi V(L + 0.75D)}}$$

- fv : Resonator's resonant frequency(Hz)
- C:344,000(mm/sec)
- D: Inside diameter of sound emission hole(mm)
- L : Thickness of sound emission hole side(mm)

V : Resonator housing volume(sq. mm)



### Standard Driver Circuit



# Standard Test Fixture



## Soldering Condition

- Recommendable reflow soldering condition is as follows.
- Note 1; It is requested that reflow soldering should be executed after heat of product goes down to normal temperature.
- Note 2; Peak reflow temperature of 260 °C, with a maximum duration of 60 sec. between 220°C and 260°C





| NO | EQUIPMENT       | REMARKS                            |  |
|----|-----------------|------------------------------------|--|
| 1  | Audio Analyzer  | B&K 2012                           |  |
| 2  | Preamplifier    | LAM 300 2716-A                     |  |
| 3  | Baffle Box      | HS Standard (1000 m <sup>3</sup> ) |  |
| 4  | Dynamic Speaker | SPEAKER                            |  |
| 5  | MIC.            | B&K 4192                           |  |
| 6  | MIC. PRE-AMP    | B&K 2669                           |  |



#### Receiver Measurement 2 1 $\overset{\circ}{\bigcirc}$ $\bigcirc$ $\bigcirc$ Ç Ô OQE 4 5&6 Sine Input 7

| NO | EQUIPMENT        | REMARKS        |
|----|------------------|----------------|
| 1  | AUDIO ANALYZER   | B&K 2012       |
| 2  | PREAMPLIFIER     | LAM 300 2716-A |
| 3  | DYNAMIC RECEIVER | RECEIVER       |
| 4  | EARPIECE         | HS STANDARD    |
| 5  | COUPLER          | B&K 4185       |
| 6  | MIC.             | B&K 4192       |
| 7  | MIC. PRE-AMP     | B&K 2669       |